压力传感器在物联网的应用带来的启发
压力传感器的其中一个改变就是小型化,原来的压力传感器很大。传统的传感器缺点就是重量重、体积大。其优点则为有多种介质,包括夹板安装等都已经形成工业标准,同时还可以增加机械保护,如果硅芯片自身过压能力不好,可以通过增加保护膜片来增加过压保护能力。所以我们想是不是可以把这么大的东西搞得越小越好。
首先由于在物联网或工业物联网的应用上没有人再通过查看表头来查看信息了,所有信息都会发送到系统中,这就使得LCD、点阵等表头显示不再有意义。在数字化输出中,例如有485、LoRa、无线等形式输出,距离比较近的可以用ZigBee,距离比较远的可以用LoRa来实现。
然后物联网环境中介质一般比较单一,没有那么多复杂和带有腐蚀性的介质,因而可以不用做两个大的夹板溶池,也不需要大的清洗和排液系统,可以通过在传感器的两侧做两个排液孔实现排液,从而进一步降低传感器的成本和体积。
再次不再需要保护膜片。芯片有一个很大的特点就是单边过压,另外,在物联网应用场景中的小型化场合中不需要太大的耐压能力,因而可以省掉中心保护工艺,再小型化,这样成本也没有增加。
必须要有自补偿,对于差压来说,我们还是希望它可以适应各种温度的变化,特别是硅传感器,温度变化很重要。
压力传感器的工作原理
由于自动化技术的发展,工业设备中常用的压力传感器,除了液柱、弹性压力表之外,一般都采用了压力变送器和传感装置,这些传感装置可以把压力转化为电信号。压力器是一种把压力转换成电信号输出的传感器。一般情况下,传感器分为感光元件和变频器两部分。
感光元件可以直接感觉或反应被测得的部分;它是指感光元件中感觉或反应的被测应变,转化为适合传送或测量的电子信号部分。因为传感器的输出信号通常很弱,需要对其进行调制和放大。集成化技术的发展,促使人们再次把这部分电路和电源等电路装入传感器内部。
通过这种方式,传感器能够输出易于处理、可传输的信号。而在技术相对落后的阶段,所谓的传感元件,即传感元件,即传感传感元件。通常来说,压力传感器是指将变化的压力信号转化为敏感元件,相应地改变电阻信号或电容信号。
例如:压阻器、压容元件等。与此同时,压力传感器种类繁多,如应变阻器的电阻、半导体应变压片、压阻压力传感器、电感压力传感器、电容压力传感器、谐振压力传感器等。
压力传感器的工作原理
压力阻式力传感器:电阻应变片是压阻式应变传感器的重要部件之一。应变电性金属电阻的工作原理是吸附于基体材料上的应变电阻与机械变形时的阻值变化,这一现象被称为电阻应变效应。
瓷质压力传感器:基于压阻效应,这种压力直接作用于陶瓷膜片的前面,使膜片产生微小变形,所述厚膜电阻印于背面,在惠斯通电桥的连结过程中,由于压敏电阻的压阻效应,电桥产生一个与压力成正比的电压信号,并与激励电压成正比。根据压力量程的不同,标准信号标定为2.0/3.0/3.3mV/V等,可与应变传感器兼容。
散射硅压敏传感器:扩散硅压力传感器的工作原理也是基于压阻效应,利用压阻效应原理,将被测介质的压力直接作用在感应器(不锈钢或陶瓷)上,使得薄膜产生与介质压力成比例的微位移,使传感器的电阻值发生变化,利用电子线路探测到这种变化,并转换出与此压力相应的标准测量信号。